pytz_deprecation_shim
Release <unknown>

Paul Ganssle

Jun 11, 2020






CONTENTS

1 Usage 3

2 Indices and tables 5







pytz_deprecation_shim, Release <unknown>

pytz has served the Python community well for many years, but it is no longer the best option for providing time
zones. pytz has a non-standard interface that is very easy to misuse; this interface was necessary when pytz was
created, because datetime had no way to represent ambiguous datetimes, but this was solved in in Python 3.6,
which added a fold attribute to datetimes in PEP 495. With the addition of the zoneinfo module in Python 3.9
(PEP 615), there has never been a better time to migrate away from pyt z.

However, since pytz time zones are used very differently from a standard tzinfo, and many libraries have built
pytz zones into their standard time zone interface (and thus may have users relying on the existence of the 1ocalize
and normalize methods); this library provides shim classes that are compatible with both PEP 495 and pytz’s
interface, to make it easier for libraries to deprecate pyt z.

CONTENTS 1


https://blog.ganssle.io/articles/2018/03/pytz-fastest-footgun.html
https://www.python.org/dev/peps/pep-0495/
https://www.python.org/dev/peps/pep-0615/

pytz_deprecation_shim, Release <unknown>

2 CONTENTS



CHAPTER
ONE

USAGE

This library is intended for temporary usage only, and should allow you to drop your dependency on pyt z while also
giving your users notice that eventually you will remove support for the pyt z-specific interface.

Within your own code, use pytz_deprecation_shim.timezone shims as if they were zoneinfo or
dateutil.tz zones — donotuse localize or normalize:

>>> import pytz_deprecation_shim as pds
>>> from datetime import datetime, timedelta
>>> LA = pds.timezone ("America/Los_Angeles")

>>> dt = datetime (2020, 10, 31, 12, tzinfo=LA)
>>> print (dt)
2020-10-31 12:00:00-07:00

>>> dt.tzname ()
'PDT"'

Datetime addition will work like normal Python datetime arithmetic, even across a daylight saving time transition:

>>> dt_add = dt + timedelta (days=1)

>>> print (dt_add)
2020-11-01 12:00:00-08:00

>>> dt_add.tzname ()
'PST!

However, if you have exposed a time zone to end users who are using 1ocalize and/or normalize or any other
pytz-specific features (or if you’ve failed to convert some of your own code all the way), those users will see a
warning (rather than an exception) when they use those features:

>>> dt = LA.localize (datetime (2020, 10, 31, 12))
.../pytz_deprecation_shim/_impl.py:81: PytzUsageWarning: The localize
method is no longer necessary, as this time zone supports the fold
attribute (PEP 495). For more details on migrating to a PEP 495-compliant
implementation, see <TBD>

warnings.warn (

>>> print (dt)

2020-10-31 12:00:00-07:00
>>> dt.tzname ()

'PDT"

>>> dt_add = LA.normalize(dt + timedelta (days=1))

(continues on next page)



https://blog.ganssle.io/articles/2018/02/aware-datetime-arithmetic.html

pytz_deprecation_shim, Release <unknown>

(continued from previous page)

.../pytz_deprecation_shim/_impl.py:131: PytzUsageWarning: The normalize
method is no longer necessary, as this time zone supports the fold
attribute (PEP 495). For more details on migrating to a PEP 495-compliant
implementation, see <TBD>

warnings.warn (

>>> print (dt_add)
2020-11-01 12:00:00-08:00
>>> dt_add.tzname ()

'PST!

For IANA time zones, calling str () on the shim zones (and indeed on pyt z and zoneinfo zones as well) returns
the IANA key, so end users who would like to actively migrate to a zoneinfo (or backports.zoneinfo) can
do so:

>>> from zoneinfo import ZonelInfo

>>> LA = pds.timezone ("America/Los_Angeles")
>>> LA_zi = ZonelInfo(str (LA))

>>> print (LA_zi)

zoneinfo.ZoneInfo (key="America/Los_Angeles')

4 Chapter 1. Usage




CHAPTER
TWO

INDICES AND TABLES

* genindex
¢ modindex

¢ search




	Usage
	Indices and tables

